N
&
K

Regular Expr
Denial of Se

Alex Roichman
Chief Architect, Checkmarx

Adar Weidman

Senior Programmer, Checkmarx

Q.
9,
S

ww OCHECKMARX

> SOURCE CODE ANALYSIS TECHNOLOGIES

Agenda

* DoS attack
* Regex and DoS - ReDoS
* Exploiting ReDoS: Why, Where & How

* Leveraging ReDoS to Web attacks

— Server-side ReDoS
— Client-side ReDoS

* Preventing ReDoS
 Conclusions

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

DoS Attack

* The goal of Information Security is to preserve
— Confidentiality
— Integrity
— Availability
 The final element in the CIA model,
Availability, is often overlooked
e Attack on Availability - DoS

* DoS attack attempts to make a computer
resource unavailable to its intended users

@,
Y
@ SOURCE CODE ANALYSIS TECHNOLOGIES

8

o

Brute-Force DoS

* Sending many requests such that the victim cannot
respond to legitimate traffic, or responds so slowly as to
be rendered effectively unavailable

* Flooding
* DDoS
e Brute-force DoS is an old-fashion attack
— It is network oriented
— It can be easily detected/prevented by existing tools
— Itis hard to execute (great number of requests, zombies...)
— Large amount of traffic is required to overload the server

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Sophisticated DoS

* Hurting the weakest link of the system
* Application bugs
— Buffer overflow

* Fragmentation of Data Structures
— Hash Table

* Algorithm worst case

Sophisticated DoS is a new approach

— It is application oriented

— Hard to prevent/detect

— Easy to execute (few requests, no botnets)

— Amount of traffic that is required to overload the server -
little

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

From Sophisticated DoS to Regex DoS

* One kind of sophisticated DoS is DoS by Regex
or ReDoS

* Itis believed that Regex performance is fast,
but the truth is that the Regex worst case is
exponential

* In this presentation we will show how an
attacker can easily exploit the Regex worst
case and cause an application DoS

 We will show how an application can be
ReDoSed by sending only one small message

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

ReDoS on the Web

* The fact that some evil Regexes may result on DoS
was mentioned in 2003 by [1]

 |n our research we want to revisit an old attack and
show how we can leverage it on the Web

* |f unsafe Regexes run on inputs which cannot be
matched, then the Regex engine is stuck

* The art of attacking the Web by ReDoS is by finding
inputs which cannot be matched by the above
Regexes and on these Regexes a Regex-based Web
systems will get stuck

[1] http://www.cs.rice.edu/~scrosby/hash/slides/lUSENIX-RegexpWIP.2.ppt

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt

Regular Expressions

* Regular Expressions (Regexes) provide a
concise and flexible means for identifying

strings
* Regexes are written in a formal language that
can be interpreted by a Regex engine
* Regexes are widely used by
— Text editors
— Parsers/Interpreters/Compilers
— Search engines
— Text validations
— Pattern matchers...

o2,
2w CHECKMARX
’0’ ssssssssssssssssssssssssssssss

Regex Implementations

* There are at least two different algorithms that
decide if a given string matches a regular expression:
— Perl-based

— NFA-based

* NFA-based implementation is very simple and
allows the use of backreferences

* Many environments like .NET, Java, JavaScript etc.
use NFA-based implementation

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Regex NFA-based Engine Algorithm

* The Regex engine builds Nondeterministic Finite
Automata (NFA) for a given Regex

* For each input symbol NFA transitions to a new state
until all input symbols have been consumed

 On an input symbol NFA may have several possible
next states

 Regex deterministic algorithm tries all paths of NFA
one after the other until it reaches an accepting state
(match) or all paths are tried (no match)

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Regex Complexity

* Inageneral case the number of different paths is exponential
for input length

e Regex: Ma+)+S
* Payload: “aaaaX”
O+ o O+

* # of different paths: 16

* Regex worst case is eXxponential

* How many paths do we have for “aaaaaaaaaaX”? 1024
 And for “aaaaaaaaaaaaaaaaaaaaX”?...

o2,
(2 SOURCE CODE ANALYSIS TECHNOLOGIES

Evil Regex Patterns

. Regex is called evil if it can be stuck on specially crafted input
. Each evil Regex pattern should contain:
— Grouping construct with repetition
— Inside the repeated group there should appear
* Repetition
* Alternation with overlapping
. Evil Regex pattern examples

1. (a+)+

2. ([a-zA-Z]+)*
3. (a]aa)+

4. (ala?)+

5. (.*a){x} | forx>10
Payload: “aaaaaaaaaaaaaaaaaaX”

4+ CHECKMARX

SOURCE CODE ANALYSIS TECHNOLOGIES

Real examples of ReDoS

e OWASP Validation Regex Repository [2]

— Person Name
* Regex: Ma-zA-Z]+(([\"\\.\- [[a-zA-Z])?[a-zA-Z]*)*S

* Payload: “aaaaaaaaaaaaaaaaaaaaaaaaaaaal”

—Java Classname
« Regex: M([a-2])+.)+[A-Z]([a-2])+$

* Payload: “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal”

[2] http://www.owasp.org/index.php/OWASP_Validation_Regex_Repository

o2,
2w CHECKMARX
”’ SOURCE CODE ANALYSIS TECHNOLOGIES

http://www.owasp.org/index.php/OWASP_Validation_Regex_Repository

Real examples of ReDoS

* Regex Library [3]

— Email Validation
* Regex: M[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@(([0-9a-zA-Z])+([-\w] *[0-9a-zA-Z]) *\.)+|a-
zA—Z]{2,9})S
* Payload: a@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
— Multiple Email address validation
* Regex: Ma-zA-Z]+(([\'\,\.\- 1[a-zA-Z])?[a-zA-Z]*) *\s+&It;(\w[-._\w]*\w@\w[-
AW WANAW{2,31) > S | A\W[-._\w]*\w@\w[-._\w]*\w\.\w{2,3})$
* Payload: aaaaaaaaaaaaaaaaaaaaaaaa!
— Decimal validator
* Regex: M\d*[0-9](] \d*[0-9]])*S
 Payload:1111111111121111211122111117!
— Pattern Matcher

* Regex: M[a-z0-9]+([\-a-z0-9]*[a-z0-9]+)?\.){0, }([a-z0-9]+([\-a-z0-9] *[a-zO0-
9]+)?){1,63}(\.[a-z0-9]{2,7})+S
* Payload: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal

[3] http://regexlib.com/

0
0
SOURCE CODE ANALYSIS TECHNOLOGIES

http://regexlib.com/

Exploiting ReDoS: Why

* The art of writing robust Regexes is obscure and difficult
 Programmers are not aware of Regex threats

* QA generally checks for valid inputs, attackers exploit
invalid inputs on which a Regex engine will try all existing
paths until it rejects the input

e Security experts are not aware of DoS on Regexes
* There are no tools for ReDoS-safety validation

* By bringing a Regex engine to its worst exponential case,
an attacker can easily exploit DoS.

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Exploiting ReDoS: How

 There are two ways to ReDoS a system:
— Crafting a special input for an existing system Regex

 Build a string for which a system Regex has no match
and on this string a Regex machine will try all available
paths until it rejects the string
— Regex: (a+)+
— Payload: aaaaaaaaX

— Injecting a Regex if a system builds it dynamically
* Build a Regex with many paths which will be “stuck-in”
on a system string by using all these paths until it

rejects the string
— Payload : (.+)+\u001

o2,
(2 SOURCE CODE ANALYSIS TECHNOLOGIES

Exploiting ReDoS: Where

* Regexes are ubiquitous now —the web is
Regex-based

IDS/IPS

o2,
&> CHECKMARX
(2 SOURCE CODE ANALYSIS TECHNOLOGIES

Web application ReDoS — Regex
Validations

* Regular expressions are widely used for
implementing application validation rules.

 There are two main strategies for validating inputs
by Regexes:

— Accept known good-

* Regex should begin with and end with “S” character to
validate an entire input and not only part of it

* Very tight Regex will cause False Positives (DoS for a legal user!)

— Reject known bad-
* Regex can be used to identify an attack fingerprint
* Relaxed Regex can cause False Negatives

0
0
SOURCE CODE ANALYSIS TECHNOLOGIES

“up”

Web application ReDoS — Malicious
Inputs

* Crafting malicious input for a given Regex

e Blind attack — Regex is unknown to an attacker:

— Try to understand which Regex can be used for a selected
input

— Try to divide Regex into groups

— For each group try to find a string which cannot be
matched

* Non-blind attack - Many applications are open source;
many times the same Regex appears both in client-side
and in server-side:

— Understand a given Regex and build a malicious input

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Web application ReDoS — Attack 1

* Aserver side application can be stuck in when client-
side validations are backed-up on a server side
e Application ReDoS attack vector 1:
— Open a source of Html
— Find evil Regex in JavaScript
— Craft a malicious input for a found Regex

— Submit a valid value via intercepting proxy and change
the request to contain a malicious input

— You are done!

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Web application ReDoS — Malicious
Regexs

* Crafting malicious Regex for a given string.

— Many applications receive a search key in format of
Regex

— Many applications build Regex by concatenating user
inputs

— Regex Injection [4] like other injections is a common
application vulnerability

— Regex Injection can be used to stuck an application

[4] C. Wenz: Regular Expression Injection

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Web application ReDoS — Attack 2

* Application ReDoS attack vector 2:

— Find a Regex injection vulnerable input by
submitting an invalid escape sequence like “\m”

— If the following message is received: “invalid
escape sequence”, then there is a Regex injection

— Submit “(.+)+\u0001”
— You are done!

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Google CodeSearch Hacking

* Google CodeSearch involves using advanced
operators and Regexes in the Google search engine
to locate specific strings of text within open sources

[5]:

* Meta-Regex is a Regex which can be used to find evil
Regexes in a source code:

— Regex.+\(\.*\)\+
— Regex.+\(.\.*\)*

* Google CodeSearch Hacking — involves using meta-
Regexes to find evil Regexes in open sources

[5] http://www.google.com/codesearch

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

http://www.google.com/codesearch

Web application ReDoS Example

e DataVault [6]:
— Regex: M\[(,.*)*\]$
— Payload: [,,,,,10111r000099000000909)
e WinFormsAdvanced [7]:
— Regex: \A([A-Z,a-z]*\s?[0-9]*[A-Z,a-2]*)*\Z
— Payload: aaaaaaaaaaaaaaaaaal
 EntLib [8]:
— Regex: M[M\"]+)(2:A\([*\"]+))*S
— Payload: \\\TTTTTTTTTLL LTV

[6] http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc#4QmZNJ8GGhl/trunk

/DataVault.Tesla/Impl/TypeSystem/AssociationHelper.cs
[7] http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc#nVoRdQ_MJpE/Zoran

/WinFormsAdvansed/RegeularDataToXML/Form1.cs
[8] http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc#Y_Z6zi1FBas/Blocks/Common

[Src/Configuration/Manageability/ Adm/AdmContentBuilder.cs

.
Yole,

“»CHECKMARX

SOURCE CODE ANALYSIS TECHNOLOGIES

http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc

Client-side ReDoS

* Internet browsers spend tremendous efforts
to prevent DoS.

 Among the issues that browsers prevent:
— Infinite loops
— Long iterative statements
— Endless recursions

 But what about Regex?
* Relevant for Java/JavaScript based browsers

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Client-side ReDoS — Browser ReDoS

* Browser ReDoS attack vector:

— Deploy a page containing the following JavaScript

code:
<html>
<script language='jscript'>
myregexp = new RegExp(/*(a+)+S/);
mymatch = myregexp.exec("aaaaaaaaaaaaaaaaaaaaaaaaaaaXx");
</script>
</html>

— Trick a victim to browse this page
— You are done!

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Preventing ReDoS

m ReDoS vulnerability is serious so we should be
able to prevent/detect it

m Dynamically built input-based Regex should not
be used or should use appropriate sanitizations

m Any Regex should be checked for ReDoS safety
prior to using it

m The following tools should be developed for
Regex safety testing:

» Dynamic Regex testing, pen testing/fuzzing
» Static code analysis tools for unsafe-Regex detection

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

Conclusions

m The web is Regex-based

B The border between safe and unsafe Regex is very
ambiguous

B In our research we show that the Regex’s worst
exponential case may be easily leveraged to DoS
attacks on the web

B In our research we revisited ReDoS and tried:

B to expose the problem to the application security
community

B to encourage development of Regex-safe
methodologies and tools

o2,
@® SOURCE CODE ANALYSIS TECHNOLOGIES

ReDoS — Q&A

Thank you,
Alex Roichman
Alexr@Checkmarx.com

%0,

4 CHECKMARX

> SOURCE CODE ANALYSIS TECHNOLOGIES

mailto:Alexr@Checkmarx.com

