
Regular Expression
Denial of Service

Alex Roichman
Chief Architect, Checkmarx

Adar Weidman
Senior Programmer, Checkmarx

Checkmarx Confidential and Proprietary - 2008

• DoS attack
• Regex and DoS - ReDoS
• Exploiting ReDoS: Why, Where & How
• Leveraging ReDoS to Web attacks

– Server-side ReDoS
– Client-side ReDoS

• Preventing ReDoS
• Conclusions

Agenda

Checkmarx Confidential and Proprietary - 2008

DoS Attack

• The goal of Information Security is to preserve
– Confidentiality

– Integrity

– Availability

• The final element in the CIA model,
Availability, is often overlooked

• Attack on Availability - DoS

• DoS attack attempts to make a computer
resource unavailable to its intended users

Checkmarx Confidential and Proprietary - 2008

Brute-Force DoS

• Sending many requests such that the victim cannot
respond to legitimate traffic, or responds so slowly as to
be rendered effectively unavailable

• Flooding

• DDoS

• Brute-force DoS is an old-fashion attack
– It is network oriented

– It can be easily detected/prevented by existing tools

– It is hard to execute (great number of requests, zombies…)

– Large amount of traffic is required to overload the server

Checkmarx Confidential and Proprietary - 2008

Sophisticated DoS

• Hurting the weakest link of the system
• Application bugs

– Buffer overflow

• Fragmentation of Data Structures
– Hash Table

• Algorithm worst case
• Sophisticated DoS is a new approach

– It is application oriented
– Hard to prevent/detect
– Easy to execute (few requests, no botnets)
– Amount of traffic that is required to overload the server -

little

Checkmarx Confidential and Proprietary - 2008

From Sophisticated DoS to Regex DoS

• One kind of sophisticated DoS is DoS by Regex
or ReDoS

• It is believed that Regex performance is fast,
but the truth is that the Regex worst case is
exponential

• In this presentation we will show how an
attacker can easily exploit the Regex worst
case and cause an application DoS

• We will show how an application can be
ReDoSed by sending only one small message

Checkmarx Confidential and Proprietary - 2008

ReDoS on the Web

• The fact that some evil Regexes may result on DoS
was mentioned in 2003 by [1]

• In our research we want to revisit an old attack and
show how we can leverage it on the Web

• If unsafe Regexes run on inputs which cannot be
matched, then the Regex engine is stuck

• The art of attacking the Web by ReDoS is by finding
inputs which cannot be matched by the above
Regexes and on these Regexes a Regex-based Web
systems will get stuck

[1] http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt

http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt
http://www.cs.rice.edu/~scrosby/hash/slides/USENIX-RegexpWIP.2.ppt

Checkmarx Confidential and Proprietary - 2008

Regular Expressions

• Regular Expressions (Regexes) provide a
concise and flexible means for identifying
strings

• Regexes are written in a formal language that
can be interpreted by a Regex engine

• Regexes are widely used by
– Text editors
– Parsers/Interpreters/Compilers
– Search engines
– Text validations
– Pattern matchers…

Checkmarx Confidential and Proprietary - 2008

Regex Implementations

• There are at least two different algorithms that
decide if a given string matches a regular expression:

– Perl-based

– NFA-based

• NFA-based implementation is very simple and
allows the use of backreferences

• Many environments like .NET, Java, JavaScript etc.
use NFA-based implementation

Checkmarx Confidential and Proprietary - 2008

Regex NFA-based Engine Algorithm

• The Regex engine builds Nondeterministic Finite
Automata (NFA) for a given Regex

• For each input symbol NFA transitions to a new state
until all input symbols have been consumed

• On an input symbol NFA may have several possible
next states

• Regex deterministic algorithm tries all paths of NFA
one after the other until it reaches an accepting state
(match) or all paths are tried (no match)

Checkmarx Confidential and Proprietary - 2008

Regex Complexity

• In a general case the number of different paths is exponential
for input length

• Regex: ^(a+)+$

• Payload: “aaaaX”

• # of different paths: 16

• Regex worst case is exponential
• How many paths do we have for “aaaaaaaaaaX”? 1024

• And for “aaaaaaaaaaaaaaaaaaaaX”?...

Checkmarx Confidential and Proprietary - 2008

Evil Regex Patterns

• Regex is called evil if it can be stuck on specially crafted input

• Each evil Regex pattern should contain:

– Grouping construct with repetition

– Inside the repeated group there should appear

• Repetition

• Alternation with overlapping

• Evil Regex pattern examples

1. (a+)+

2. ([a-zA-Z]+)*

3. (a|aa)+

4. (a|a?)+

5. (.*a){x} | for x > 10

Payload: “aaaaaaaaaaaaaaaaaaX”

Checkmarx Confidential and Proprietary - 2008

Real examples of ReDoS

• OWASP Validation Regex Repository [2]

–Person Name
• Regex: ^[a-zA-Z]+(([\'\,\.\-][a-zA-Z])?[a-zA-Z]*)*$

• Payload: “aaaaaaaaaaaaaaaaaaaaaaaaaaaa!”

– Java Classname
• Regex: ^(([a-z])+.)+[A-Z]([a-z])+$

• Payload: “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!”

[2] http://www.owasp.org/index.php/OWASP_Validation_Regex_Repository

http://www.owasp.org/index.php/OWASP_Validation_Regex_Repository

Checkmarx Confidential and Proprietary - 2008

Real examples of ReDoS

• Regex Library [3]
– Email Validation

• Regex: ^([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@(([0-9a-zA-Z])+([-\w]*[0-9a-zA-Z])*\.)+[a-
zA-Z]{2,9})$

• Payload: a@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!

– Multiple Email address validation
• Regex: ^[a-zA-Z]+(([\'\,\.\-][a-zA-Z])?[a-zA-Z]*)*\s+<(\w[-._\w]*\w@\w[-

._\w]*\w\.\w{2,3})>$|^(\w[-._\w]*\w@\w[-._\w]*\w\.\w{2,3})$
• Payload: aaaaaaaaaaaaaaaaaaaaaaaa!

– Decimal validator
• Regex: ^\d*[0-9](|.\d*[0-9]|)*$
• Payload: 1111111111111111111111111!

– Pattern Matcher
• Regex: ^([a-z0-9]+([\-a-z0-9]*[a-z0-9]+)?\.){0,}([a-z0-9]+([\-a-z0-9]*[a-z0-

9]+)?){1,63}(\.[a-z0-9]{2,7})+$
• Payload: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!

[3] http://regexlib.com/

http://regexlib.com/

Checkmarx Confidential and Proprietary - 2008

Exploiting ReDoS: Why

• The art of writing robust Regexes is obscure and difficult

• Programmers are not aware of Regex threats

• QA generally checks for valid inputs, attackers exploit
invalid inputs on which a Regex engine will try all existing
paths until it rejects the input

• Security experts are not aware of DoS on Regexes

• There are no tools for ReDoS-safety validation

• By bringing a Regex engine to its worst exponential case,
an attacker can easily exploit DoS.

Checkmarx Confidential and Proprietary - 2008

Exploiting ReDoS: How

• There are two ways to ReDoS a system:

– Crafting a special input for an existing system Regex

• Build a string for which a system Regex has no match
and on this string a Regex machine will try all available
paths until it rejects the string

– Regex: (a+)+

– Payload: aaaaaaaaX

– Injecting a Regex if a system builds it dynamically

• Build a Regex with many paths which will be “stuck-in”
on a system string by using all these paths until it
rejects the string

– Payload : (.+)+\u001

Checkmarx Confidential and Proprietary - 2008

• Regexes are ubiquitous now – the web is
Regex-based

Exploiting ReDoS: Where

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS – Regex
Validations

• Regular expressions are widely used for
implementing application validation rules.

• There are two main strategies for validating inputs
by Regexes:
– Accept known good-

• Regex should begin with “^” and end with “$” character to
validate an entire input and not only part of it

• Very tight Regex will cause False Positives (DoS for a legal user!)

– Reject known bad-
• Regex can be used to identify an attack fingerprint

• Relaxed Regex can cause False Negatives

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS – Malicious
Inputs

• Crafting malicious input for a given Regex

• Blind attack – Regex is unknown to an attacker:
– Try to understand which Regex can be used for a selected

input

– Try to divide Regex into groups

– For each group try to find a string which cannot be
matched

• Non-blind attack - Many applications are open source;
many times the same Regex appears both in client-side
and in server-side:
– Understand a given Regex and build a malicious input

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS – Attack 1

• A server side application can be stuck in when client-
side validations are backed-up on a server side

• Application ReDoS attack vector 1:

– Open a source of Html

– Find evil Regex in JavaScript

– Craft a malicious input for a found Regex

– Submit a valid value via intercepting proxy and change
the request to contain a malicious input

– You are done!

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS – Malicious
Regexs

• Crafting malicious Regex for a given string.
– Many applications receive a search key in format of

Regex

– Many applications build Regex by concatenating user
inputs

– Regex Injection [4] like other injections is a common
application vulnerability

– Regex Injection can be used to stuck an application

[4] C. Wenz: Regular Expression Injection

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS – Attack 2

• Application ReDoS attack vector 2:

– Find a Regex injection vulnerable input by
submitting an invalid escape sequence like “\m”

– If the following message is received: “invalid
escape sequence”, then there is a Regex injection

– Submit “(.+)+\u0001”

– You are done!

Checkmarx Confidential and Proprietary - 2008

Google CodeSearch Hacking

• Google CodeSearch involves using advanced
operators and Regexes in the Google search engine
to locate specific strings of text within open sources
[5]:

• Meta-Regex is a Regex which can be used to find evil
Regexes in a source code:
– Regex.+\(\.*\)\+

– Regex.+\(.\.*\)*

• Google CodeSearch Hacking – involves using meta-
Regexes to find evil Regexes in open sources

[5] http://www.google.com/codesearch

http://www.google.com/codesearch

Checkmarx Confidential and Proprietary - 2008

Web application ReDoS Example

• DataVault [6]:

– Regex: ^\[(,.*)*\]$

– Payload: [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

• WinFormsAdvanced [7]:

– Regex: \A([A-Z,a-z]*\s?[0-9]*[A-Z,a-z]*)*\Z

– Payload: aaaaaaaaaaaaaaaaaa!

• EntLib [8]:

– Regex: ^([^\"]+)(?:\\([^\"]+))*$

– Payload: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"
[6] http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc#4QmZNJ8GGhI/trunk

/DataVault.Tesla/Impl/TypeSystem/AssociationHelper.cs

[7] http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc#nVoRdQ_MJpE/Zoran

/WinFormsAdvansed/RegeularDataToXML/Form1.cs

[8] http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc#Y_Z6zi1FBas/Blocks/Common

/Src/Configuration/Manageability/Adm/AdmContentBuilder.cs

http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=3&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=1&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc
http://www.google.com/codesearch/p?hl=en&sa=N&cd=4&ct=rc

Checkmarx Confidential and Proprietary - 2008

Client-side ReDoS

• Internet browsers spend tremendous efforts
to prevent DoS.

• Among the issues that browsers prevent:

– Infinite loops

– Long iterative statements

– Endless recursions

• But what about Regex?

• Relevant for Java/JavaScript based browsers

Checkmarx Confidential and Proprietary - 2008

Client-side ReDoS – Browser ReDoS

• Browser ReDoS attack vector:

– Deploy a page containing the following JavaScript
code:

<html>

<script language='jscript'>

myregexp = new RegExp(/^(a+)+$/);

mymatch = myregexp.exec("aaaaaaaaaaaaaaaaaaaaaaaaaaaX");

</script>

</html>

– Trick a victim to browse this page

– You are done!

Checkmarx Confidential and Proprietary - 2008

Preventing ReDoS

ReDoS vulnerability is serious so we should be
able to prevent/detect it

Dynamically built input-based Regex should not
be used or should use appropriate sanitizations

Any Regex should be checked for ReDoS safety
prior to using it

The following tools should be developed for
Regex safety testing:

Dynamic Regex testing, pen testing/fuzzing

Static code analysis tools for unsafe-Regex detection

Checkmarx Confidential and Proprietary - 2008

Conclusions

The web is Regex-based

The border between safe and unsafe Regex is very
ambiguous

In our research we show that the Regex’s worst
exponential case may be easily leveraged to DoS
attacks on the web

In our research we revisited ReDoS and tried:

to expose the problem to the application security
community

to encourage development of Regex-safe
methodologies and tools

Checkmarx Confidential and Proprietary - 2008

ReDoS – Q&A

Thank you,
Alex Roichman

Alexr@Checkmarx.com

mailto:Alexr@Checkmarx.com

